Security of Hedged Fiat–Shamir Signatures under Fault Attacks

Diego F. Aranha, Claudio Orlandi, Akira Takahashi, and Greg Zaverucha

ambiso

2020-05-06

- Consider security of hedged signature schemes against fault attacks
- Analysis and model is specific to Fiat-Shamir transformed identification protocols

¹instantiated with PRF

Introduce new security notions for chosen nonces and faulting:

- UF-KOA (unforgeability under key only attack)
- UF-CMA (unforgeability under chosen message attack)
- * UF-CMNA (unforgeability under chosen message and nonce attack)
- * *F*-UF-fCMA (unforgeability under faults, chosen message attack)
- * F-UF-fCMNA (unforgeability under faults, chosen message and nonce attack)
 L Set of fault types/positions

Figure 2: Standard UF-CMA experiment in the random oracle model

Figure from [Ara+19].

HSign(sk,m,n)	$Exp_{HSIG,HE}^{UF-CMNA}(\mathcal{A})$	OHSign(m,n)	HE(sk',(m',n'))
$\rho \leftarrow HE(sk,(m,n))$	$M \leftarrow \emptyset; \text{HET} \leftarrow \emptyset$	$\sigma \gets HSign(sk,m,n)$	If $\operatorname{HET}[sk', m', n'] = \bot$:
$\sigma \gets Sign(sk,m;\rho)$	$(sk, pk) \leftarrow Gen(1^{\lambda})$	$M \gets M \cup \{m\}$	$\operatorname{HET}[sk',m',n'] \leftarrow \!$
${\bf return} \ \sigma$	$(m^*, \sigma^*) \leftarrow \mathcal{A}^{OHSign, HE}(pk)$	${\bf return} \ \sigma$	$\mathbf{return} \operatorname{HET}[sk',m',n']$
	$v \leftarrow Verify(m^*, \sigma^*)$		
	$\mathbf{return} \ (v=1) \wedge m^* \notin M$		

Figure 5: Hedged signature scheme HSIG = R2H[SIG, HE] = (Gen, HSign, Verify) and UF-CMNA experiment. Key generation and verification are unchanged.

Figure from [Ara+19].

- Only single bit transient faults considered
- The surveyed practical attacks can be performed with a single bit fault
- Faulting functions:

```
flip_bit<sub>i</sub>(x): Flips bit at position i
set_bit<sub>i,b</sub>(x): Sets bit at position i to b
Id(x): Identity function
```

• Adversary can choose where to apply which function

F-UF-fCMNA (unforgeability under faults, chosen message and nonce attack)

$\boxed{Exp_{FS}^{UF\text{-}fCMA}(\mathcal{A})} \boxed{Exp_{HFS,HE}^{UF\text{-}fCMNA}(\mathcal{A})}$	$OFaultHSign(m,n,j,\phi)$	$OFaultSign(m,j,\phi)$
$M \leftarrow \emptyset; \mathrm{HT} \leftarrow \emptyset; \overline{\mathrm{HET} \leftarrow \emptyset}$	$f_j := \phi; f_k := Id \text{ for } k \neq j$	$f_j \coloneqq \phi; f_k \coloneqq Id \text{ for } k \neq j$
$(sk, pk) \leftarrow Gen(1^{\lambda})$	FaultHSign	FaultSign
$\begin{split} & (m^*, \sigma^*) \leftarrow \mathcal{A}^{OFaultSign,H}(pk) \\ \hline & (m^*, \sigma^*) \leftarrow \mathcal{A}^{OFaultHSign,H,HE}(pk) \\ & v \leftarrow Verify(m^*, \sigma^*) \\ & \mathbf{return} \ (v = 1) \land m^* \notin M \end{split}$	$ \overline{\rho \leftarrow f_2(HE(f_1(sk), f_0(m, n)))} $ $ (a, St) \leftarrow f_4(Com(f_3(sk; \rho))) $ $ (a, \hat{m}, \hat{p}k \leftarrow f_5(a, m, pk) $ $ e \leftarrow f_6(H(\hat{a}, \hat{m}, \hat{p}k)) $ $ z \leftarrow f_8(Resp(f_7(sk, e, St))) $ $ \sigma \leftarrow f_{10}(CSF(f_9(a, e, z))) $ $ M \leftarrow M \cup \{\hat{m}\} $ $ return \sigma $	$ \begin{array}{ } \hline \rho \leftarrow \mathfrak{s} D_{\rho}; \rho \leftarrow f_{2}(\rho) \\ (a, St) \leftarrow f_{4}(\operatorname{Com}(f_{3}(sk; \rho))) \\ \hat{a}, \hat{m}, \hat{p}\hat{k} \leftarrow f_{5}(a, m, pk) \\ e \leftarrow f_{6}(\operatorname{H}(\hat{a}, \hat{m}, \hat{p}k)) \\ z \leftarrow f_{8}(\operatorname{Resp}(f_{7}(sk, e, St))) \\ \sigma \leftarrow f_{10}(\operatorname{CSF}(f_{9}(a, e, z))) \\ M \leftarrow M \cup \{\hat{m}\} \\ \mathbf{return} \ \sigma \end{array} $

Figure 6: UF-fCMNA and UF-fCMA security experiments and faulty signing oracles for both hedged (HFS) and plain (FS) Fiat–Shamir signature schemes. *Id* stands for the identity function. The function H and HE (not shown), are the same as in Fig. 4 and Fig. 5, respectively. A dashed box indicates that the instructions inside correspond to the actual faulty signing operation.

Figure from [Ara+19].

Faulting the message in the first step \rightarrow same as simply querying a different message

- Doesn't count as an actual attack
- Excluded from the model by recording faulted messages

Comparison to [FG20]

Differences in the adversarial power as noted by [Ara+19].

In [Ara+19]'s model the adversary can:

Comparison to [FG20]

Differences in the adversarial power as noted by [Ara+19].

In [Ara+19]'s model the adversary can:

- * Set a bit to a chosen value
 - Full or differential faults cannot emulate $\mathtt{set_bit}_{i,b}$, since \mathcal{A} would need to know the read value beforehand

Comparison to [FG20]

Differences in the adversarial power as noted by [Ara+19].

In [Ara+19]'s model the adversary can:

- * Set a bit to a chosen value
 - Full or differential faults cannot emulate $\mathtt{set_bit}_{i,b}$, since \mathcal{A} would need to know the read value beforehand
- Fault sk before hashing
 - Attack:
 - Generate |sk| signatures
 - Use set_bit_{*i*,*b*} to set the i^{th} -bit to 0
 - If the signature verifies, the $i^{\rm th}$ -bit is 0 with high probability
 - sk was removed from [FG20]'s fault-resiliency-analysis: "[...] considering fault attacks on sk also in the signing process will require signature schemes secure against related-key attacks [...]" [FG20] (but this wouldn't hold with set_bit_{i,b} since the key can easily be extracted)

Comparison to [FG20] (continued ...)

- Exercise "nearly full control over the nonce, instead of assuming nonces are randomly generated and subject to bit flips later on" [Ara+19]
 - But there doesn't seem to be any difference to whether you supply the nonce or later flip it whenever you want?

Comparison to [FG20] (continued ...)

- Exercise "nearly full control over the nonce, instead of assuming nonces are randomly generated and subject to bit flips later on" [Ara+19]
 - But there doesn't seem to be any difference to whether you supply the nonce or later flip it whenever you want?
- Faulting of intermediate values (Fiat-Shamir specific) \rightarrow more fine grained analysis
 - More fine grained analysis found that Picnic2 (signature scheme) is {f₂}-UF-fCMNA secure, but that this doesn't hold in general (opportunity for capturing new security notions)
 - Suggested mitigation to faulting the commitment in Picnic2 may depend on only a single fault being possible: "In the one-fault model, two signatures is always sufficient."

But:

- Only single bit fault inserted into a single value
 - Authors argue the surveyed practical attacks can be performed with a single bit fault

But:

- Only single bit fault inserted into a single value
 - Authors argue the surveyed practical attacks can be performed with a single bit fault
- Clash not (explicitly?) considered

(if A obtains a signature that verifies with multiple messages)

- Cluttered formalization
 - $\langle \cdot \rangle$ syntax from[FG20] seems quite convenient
 - Not obvious what value is faulted in e.g. $\{f_0\}$ -UF-fCMNA insecure scheme: $f_0(m,n)$ (proof faults the message, but could we fault the nonce instead?)
 - Referring to specific fault positions by a unique identifier seems useful
 - Maybe combine the notation? E.g. $\langle m \rangle_1$ is the first occurrence where m is read.

- Remarks section has some interesting suggestions
 - Faulting global parameters
 - Faulting signature specific/internal computations isn't covered (e.g. faulting intermediate results of a sign operation)
 - Instruction skip attacks
 - Fault control flow
 - Likely implementation (and hardware) dependent
 - Fiat-Shamir with aborts (lattice crypto rejection sampling)

- Game based security notion
- Cluttered formalism
- Fine grained analysis → messy details
 But: potential for new signature security requirements
- Only single bit transient faults that occur once permitted
- Full faults and $set_bit_{i,b}$ don't map to each other

References

- [Ara+19] Diego F. Aranha, Claudio Orlandi, Akira Takahashi, and Greg Zaverucha. Security of Hedged Fiat-Shamir Signatures under Fault Attacks. Cryptology ePrint Archive, Report 2019/956. https://eprint.iacr.org/2019/956. 2019.
- [FG20] Marc Fischlin and Felix Günther. "Modeling memory faults in signature and authenticated encryption schemes". In: Cryptographers' Track at the RSA Conference. Springer. 2020, pp. 56–84.