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Abstract—Symbolic execution is a powerful technique to1

generate test inputs of arbitrarily complex functions, check if2

programs violate their model’s properties or assertions, find3

inputs that lead to desired states or aid in the process of automatic4

exploit generation. The method is haunted by the inevitable5

predicament of the state space explosion: attempting to discover6

all feasible paths in a program in a sound and complete way is7

undecidable in general and must entail acute caveats such as non-8

termination or absurd memory requirements. We present three9

techniques that attempt to mitigate the damage and ameliorate10

the applicability of the scheme to complex software-components11

by minimizing the number of states that, to retain soundness,12

must be explored.13

Keywords—Symbolic Execution, Redundant State Detection,14

S2E, Path Partitioning, State Space Explosion15

I. INTRODUCTION16

Symbolic execution is a powerful method for the analysis17

of programs aiding in test case generation[1], bounded model18

checking[2] and automatic exploit generation[3]. The tech-19

nique was introduced in the mid’70s for debugging, testing and20

to falsify program assertions[4]–[6]. In recent years a plethora21

of symbolic execution engines have sprung into life[1], [3],22

[7]–[10]. Black-box approaches to automated testing quickly23

reach their limits, as demonstrated in [1] using a simple24

example:25

int foo(int x) { // x is an input
int y = x + 3;
if (y == 13) abort(); // error
return 0;

}

If the underlying machine uses 32 bit integers, the proba-26

bility of hitting the error branch with a uniformly distributed27

input x is tiny: 2−32.28

Symbolic execution offers an alternative: by using the29

implementation and lifting it into abstract symbolic states we30

can symbolically execute the function, forming a tree structure31

of all possible executions. When we’ve reached the relevant32

branch we can use satisfiability modulo theories (SMT) solvers33

to check whether the branch condition y = 13 may hold true34

for any x, w.r.t. the conditions accumulated along the path.35

Unfortunately, symbolic execution rapidly becomes infea-36

sible, since unbounded loops may produce infinitely many37

states, yielding what’s referred to as a state space explosion.38

We investigate sound mitigations to the state space explosion 39

problem, where sound means that the symbolic execution 40

remains sound: if a path is found by the analysis it’s in fact 41

reachable. Additionally, a complete analysis would find all 42

feasible paths through a program for a given start state. 43

II. BACKGROUND 44

Similar to [11], we define symbolic states as the triple 45

(instr, σ, π) each defined as follows: 46

instr The next instruction to execute. For simplicity, 47

we restrict instructions to assignments, conditional 48

branches and jumps. 49

σ The symbolic memory, mapping addresses or pro- 50

gram variables to symbolic or concrete values. A 51

symbolic value λ is defined in terms of arbitrary 52

first order logic formulas constraining its value. 53

π The path constraints collected along the path to 54

the currently executed instruction. To explore all 55

states, we may set π = > at the beginning of the 56

analysis. 57

Depending on the current instruction symbolic execution 58

performs different actions: For assignments x := e we evaluate 59

the expression e in the current state and obtain es with which 60

we update the symbolic memory σ. Encountering a branch 61

if b then p1 else p2, we split the symbolic state into two 62

states: a state C>, in which we assert the branch condition 63

evaluated in the current state bs to hold and where we execute 64

p1 next: C> = (p1, σ, π∧bs), and the dual state C⊥ where we 65

assert ¬bs to hold, and execute p2 next: C⊥ = (p2, σ, π∧¬bs). 66

Symbolic execution incurs 4 major issues consolidated 67

in [11]. 68

Constraint Solving 69

Through SMT solvers symbolic execution engines 70

can concretize an input, i.e. find an input satisfy- 71

ing the path constraints a state is subject to. SMT 72

solving is undecidable in general, depending on 73

the underlying theories used. 74

Environment 75

Ways to handle the interaction with the en- 76

vironment, i.e. parts of the system outside of 77

the analyzed unit. For example, when the unit 78

performs a system call to write to a file, the 79

symbolic execution engine needs to manage the 80



interaction. A simple approach is to concretize81

the arguments and dispatch the system call to the82

system, however, this yields inconsistencies and83

becomes unsound as paths on different branches84

can interact.85

Memory86

Symbolic execution engines may handle pointers,87

arrays and similar complex data-structures in dif-88

ferent ways. For example, we could, when writing89

to a symbolic address, over-approximate the mem-90

ory and clobber the entire symbolic memory. Fu-91

ture reads from the memory yield unconstrained92

values, affecting the soundness of the analysis.93

State Space Explosion94

The problem of determining all possible paths95

through a program is undecidable in general.96

Symbolic execution strives to be a sound and com-97

plete analysis technique, at the cost of potential98

non-termination. Loops can cause an exponential99

increase of the number of states in the size of100

the input space. Analyses may reduce the number101

of states by eliminating redundant states w.r.t. an102

equality metric relevant for the task at hand[12].103

These issues and their solutions are major contributors to104

a successful symbolic execution engine. We will focus on the105

fourth issue: the state space explosion.106

A. Concolic execution107

When using pure symbolic execution, at each branch, its108

necessary to check whether the collected path constraints are109

satisfiable, by dispatching them to the SMT solver. Concolic110

execution, the term a portmanteau of concrete and sym-111

bolic, mixes the concrete and symbolic execution. A common112

approach to concolic execution, termed Dynamic Symbolic113

Execution, is to use a concrete execution to drive the symbolic114

execution. Starting with random concrete inputs, the concrete115

execution will efficiently decide satisfiability for us.116

III. INPUT PARTITIONING117

A concolic approach from 2009 is described in [13]. They118

partition the symbolic input of the program by exploiting119

the independence of different parts of the program input.120

As opposed to the traditional security definition of non-121

interference [13], define two inputs to be non-interferent when122

there are no data or control dependencies between them.123

If an instruction i reads a write to location w1 and writes124

to location w2, w2 is data dependent on w1. A write w2 is125

control dependent on another write, if a branch that reads w1126

dynamically controls whether w2 is performed. These depen-127

dencies are transitive and span the transitive closure of the128

described direct dependencies. Examples of the dependencies129

are illustrated in figure 1.130

The non-interferent inputs are identified by partitioning the131

input. A partition of a set S is a set of disjoint sets (blocks)132

whose union is again the set S. The input partitions can be133

used to generate inputs independent of the other partitions,134

minimizing the number of test-cases that must be generated to135

achieve coverage of every branch.136

y = 1 // w1

x = y // w2i

(a) Data Dependency

x = 1 // w1

if (x) {
y = 1 // w2

}

(b) Control Dependency

Fig. 1: Data and control dependencies can be tracked by
reasoning about the executed path.

Their algorithm FlowTest is run on a program and an 137

initial optimistic partition of the set of input variables, where 138

each variable is its own block. This optimistic partition would 139

enable the highest degree of independence, and thus the highest 140

reduction in number of explored paths and generated tests. 141

The algorithm then performs test generation and iteratively 142

merges the blocks of the partition. The test generation entails 143

concolic execution and concretization of symbolic variables. 144

Additionally it’s responsible for keeping track of the data 145

and control dependencies, and maintaining a flow map, which 146

stores for each variable the set of input blocks in the current 147

partition that may influence it. 148

The flow map is obtained through a technique known as 149

dynamic slicing, that identifies the instructions that may mutate 150

a given location. If an entry of the flow map contains multiple 151

input blocks, information may flow between these blocks. We 152

then cannot treat them separately anymore and merge them. 153

The entire process of test case generation is repeated, the 154

flow map updated, and blocks are merged until convergence. 155

Majumdar and Xu test their implementation on four bina- 156

ries, achieving an average coverage of 44%. Their benchmark 157

system was a 2.33 GHz Intel Core 2 Duo with 2 GiB of RAM. 158

Analyzing and averaging their reported metrics they cut down 159

the number of paths by a factor of 3.41 and achieve a speedup 160

of 2.81X. 161

We will see ways to improve this technique in the following 162

two sections. 163

IV. SELECTIVE SYMBOLIC EXECUTION 164

S2E is a concolic execution platform for the implementa- 165

tion of binary analysis tools. It improves upon environment 166

interaction by safely crossing the concrete/symbolic border 167

in both directions[7]. They view the analyzed unit in its 168

environment as part of a system. The environment contains 169

parts of the system not part of the unit. The system is the sum 170

of the unit and the environment. 171

Each concrete execution is performed in isolation in its 172

own virtual machine. We demonstrate S2E using the example 173

presented in [7], illustrated in figure 2. 174



Fig. 2: The app and kernel are part of the environment and
concretely executed. The app calls into the lib, which is
symbolically executed. Lib calls into the kernel, which causes
concrete executions. Shaded regions are symbolically executed.
The S2E execution results in the execution tree on the right.
Graphic from [7].

A. From Concrete to Symbolic and Back175

When the concretely executed app calls into the symboli-176

cally executed lib, e.g. libFn(10) the app receives the return177

effects of the concretely executed lib-function. Additionally,178

we explore the lib symbolically. The simplest conversion S2E179

offers, is to explore libFn(λ) with more general symbolic180

arguments, instead of the concrete arguments app used.181

B. From Symbolic to Concrete and Back182

void libFn(int x) {
if (x<5) {

buf = sysFn(x);
if (x<0)
/* ... */

}
}

(a) Example lib function libFn;
Example from [7].

x ∈ (−∞,+∞)

x < 5

x ∈ (−∞, 5) x ∈ [5,+∞)

> ⊥

(b) Lib function libFn called with
a selector converting x to a fully
symbolic value. Adapted from [7].

Fig. 3: Lib function example

When calling a function, of which we don’t have a model,183

we need to treat it as a black-box and call it with concretetized184

arguments. S2E emulates the concrete execution in a virtual185

machine and concretizes the arguments lazily: only when the186

concrete execution has a control dependency on the symbolic187

value, its concretized. This optimization allows for data to188

pass through the environment untouched, retaining its symbolic189

form. S2E even claim that data may be written to a virtual190

drive and read back again as symbolically constrained values,191

without the software stack ever branching on the contents.192

Concretizing arguments induces problems when the analy-193

sis continues the symbolic execution: if in the libFn, illustrated194

in figure 3a, x was constrained to 4, which is consistent with195

the path constraints seen in figure 3b, we won’t be able to196

cover the x < 0 branch. This problem is partially solved by197

a major contribution by [7] for sound state space reduction:198

soft constraints. Arguments that were concretized during this199

type of concrete execution are marked as soft constrained to 200

the values they were assigned. When the execution returns to 201

the symbolic execution and a branch that was possible prior 202

to the concrete call is now blocked, we can opt to go back 203

to a node in the tree of the symbolic execution, where the 204

blocking values were given their values, fork another isolated 205

subtree and choose values satisfying the branch that we want 206

to cover. However, since the concrete execution is a black-box 207

we cannot guarantee that this strategy will succeed. In fact 208

there is a simple counterexample, illustrated in figure 4, that 209

on some systems is impossible to succeed at. 210

1 int libFn(int x) {
2 char *buf = malloc(x);
3 if (buf && x<0) {
4 /* ... */
5 }
6 }

Fig. 4: A branch that may be difficult to cover.

In the demonstrated function the memory allocation func- 211

tion malloc, which takes as argument the size of the re- 212

quested memory region and returns a pointer to the first 213

element of the allocated region, is called. We then check if 214

the allocation was successful, by determining if buf 6= 0. We 215

may choose to concretize x to 1, and reach the branch condition 216

buf 6= 0∧x < 0 in line 3, but don’t cover line 4, since x ≥ 0 . 217

In fact, under the assumption the emulated system’s malloc, 218

returns NULL for requests of extremely large memory regions, 219

we will not be able to cover the branch, indifferent to the value 220

we concretize x to. The assumption is reasonable, unless the 221

system’s memory allocator is over-provisioning: Since the int 222

is converted to the machine size type: size_t. The smallest 223

size_t that is also a negative int on a 64 bit machine is 224

18446744071562067968, which is equivalent to approximately 225

16 exbibytes. 226

Additionally, S2E doesn’t offer an advantage for control 227

dependencies on the return values of functions in the environ- 228

ment. Say we abstract away an external library offering the 229

crc32 function, as seen in figure 5. Although the branch 230

would be possible to execute, S2E may try many different 231

values in vain to cover the branch. S2E’s approach would 232

reduce to a method analogous to fuzzing. 233

int libFn(char *s) {
if (crc32(s) == 3638176789) {

/* ... */
}

}

Fig. 5: S2E cannot efficiently (without resorting to exhaustive
search) find an input to cover the then branch if crc32 is
abstracted away.

C. Consistency Models 234

Through relaxed consistency models S2E mimic the pur- 235

pose of unit testing. When there’s no requirement for a 236

feasible path to exist to a target state, we can relax the 237

consistency requirements for crossing the symbolic to concrete 238



and back barrier. The approach is sound when we are testing239

a library, whose precise usage behavior shouldn’t exclusively240

be determined by the environment that the driving application241

prescribes. Assertion violations or crashes discovered on in-242

feasible paths may be of interest too, as the library should be243

robust w.r.t. a different control-flow. S2E offers incremental244

consistency relaxations with their respective use-cases, such245

that the exploration’s results remain meaningful.246

V. REDUNDANT STATE DETECTION247

Bugrara and Engler propose a method for identifying and248

pruning states that won’t exhibit previously unseen behavior.249

Their approach intertwines an array of complex analysis tech-250

niques and is sound, although they provide no formal proof in251

the paper[12].252

The basic idea of [12] is to identify and eliminate the states253

that won’t cover uncovered instructions. The simplest method254

to that end checks if a state’s constraint set at the kth instruction255

is equal to a previously recorded snapshot, where a snapshot256

is the constraint set of a previously explored state. However,257

this naïve and inefficient approach is too restrictive.258

A weaker, yet sufficient, condition is to check if the259

constraint set of a state at the kth instruction is implied by260

a snapshot of the same instruction. Intuitively this means the261

snapshot already covered the instruction with at least as general262

constraints compared to the state that’s currently explored.263

Additionally, since we are only interested in maximizing264

coverage, we can restrict ourselves to the constraints over265

memory locations that affect coverage. [12] determines if266

a location is relevant for coverage through a static control267

dependence graph and a dynamic dependence graph which are268

used to perform dynamic slicing. The static control dependence269

graph yields information on which branches remain relevant270

to cover. The dynamic dependence graph contains a multitude271

of dependencies between memory locations.272

A. Relevant Static Branches273

A branch is statically relevant if its outcome determines274

whether an uncovered instruction is reachable. We may iden-

1 if (reference_file)
2 if (stat (...))
3 error(...); //uncovered
4 ...;
5 } else {
6 if (parse_user_spec(...))
7 error(...);
8 ...;
9 }

10 if (chopt.recurse & preserve_root)
11 ...; // uncovered

Fig. 6: Linux utility chown; example from [12] with added
static control dependencies for uncovered lines.

275

tify relevant branches statically through a static control depen-276

dence graph. Nodes of this graph are static instructions and277

edges connect branches with instructions that are controlled278

by the branch’s outcome. A static branch is relevant if there 279

is a path in the static control dependence graph from it to an 280

uncovered instruction. In the example in figure 6 the uncovered 281

line 11 is control dependent on line 10, and the uncovered line 282

3 is control dependent on line 1 and 2. Therefore the relevant 283

static branches are on line 1, 2 and 10. 284

B. Dynamic Dependence Graph 285

The dynamic dependence graph is updated throughout 286

the symbolic execution to contain byte-level writes as nodes 287

and data, control and potential dependencies as edges. By 288

reasoning about the currently executed path, we can determine 289

data and control dependencies. Additionally, if a write w2 is 290

executed control dependent on w1, but the branch controlling 291

w2 is not along the executed path, w2 is potentially dependent 292

on w1. Potential dependencies can be identified by reasoning 293

about the executed path and static locations on non-executed 294

paths, which requires a sound interprocedural aliasing analysis. 295

Further optimizations and adjustments are necessary to make 296

the method efficient and sound. Mainly, state matching is 297

implemented efficiently and additional edges must be inserted 298

into the static control dependence graph to retain soundness 299

for when the program contains multiple termination points. 300

C. Dynamic Slicing 301

Using the relevant static branches and dynamic dependence 302

graph we can slice the program. Slicing the program yields the 303

set of locations that may affect the coverage of uncovered state- 304

ments. If a snapshot’s constraints w.r.t. the relevant locations 305

are a subset of the state’s, we eliminate the state. 306

Constructing the relevant location set is where lies the 307

power and complexity of redundant state detection. It’s uncer- 308

tain whether the approach is feasible to implement for binaries, 309

as techniques like dependency tracking and slicing isn’t easy 310

to perform on binaries. Their reference implementation is 311

based on the KLEE symbolic execution engine, which bases 312

its analysis on LLVM. Decompiling and lifting binaries into 313

LLVM bitcode isn’t trivial[14]. 314

The authors of the paper report an average coverage 315

increase of 3.8%. They evaluated their implementation on 66 316

software-components from the GNU coreutils and achieved an 317

increased speedup greater than 1X for 82% of them. 23 of the 318

89 possible utilities were removed from their analysis either 319

because of issues with the 64-bit implementation, or because 320

the projects were too small and full coverage was obtained 321

instantly. They report a speedup of 50.5X on average, and 322

10X in the median. 323

VI. RELATED WORK 324

The survey by Baldoni, Coppa, D’Elia, et al. in [11] 325

provides an extensive overview over the subject and discusses 326

a large set of approaches used to improve symbolic exe- 327

cution. Researchers, proposing a system similar to the one 328

demonstrated in [12] achieve similar performance metrics with 329

a speedup ranging from 1.02X to 49.56X[15]. In contrast 330

to [13]’s input partitioning, [16] partition the output, and sim- 331

ilar to [12] also use data, control and potential dependencies, 332

to cut away paths. Additionally, [16] give rigorous definitions 333

and proofs of their algorithms. 334



VII. CONCLUSION335

The methods demonstrated report immense improvements336

in the number of states explored when compared to naive337

implementations. Unfortunately, only S2E appears to be avail-338

able for public use. Wang, Liu, Guan, et al. claim to have339

published their implementation, however we weren’t able to340

obtain a copy[15]. We’ve contacted the authors of [12] via341

email, asking if they have published their implementation but342

received no reply within five weeks. Standardized benchmarks343

and interfaces or more aggressive open-sourcing may aid the344

research of symbolic execution.345

Four of the mentioned studies depend in part on the same346

techniques and appear to have similar underlying ideas[12],347

[13], [15], [16]. It may be possible to combine the ideas, as is348

common in symbolic execution[11], to attain additional gains349

in performance.350
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